—Chapter 1—

Vector Calculus
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1-1 Vector Fields

0OS:
David Guichard, Vector Calculus
https://www.whitman.edu/mathematics/calculus online/chapter
16.html

A. VECTOR FUNCTIONS

(1) Parametric equations and curves
Consider the equation of a circle:
X%+ y? =2
We will never be able to write the equation above down as a single
equation of the form y = f(x).
y =Vr? —x? (top)
y=—-Vr2—x2 (bottom)
We, thus, introduce parametric equations, defining both x and y in
terms of a third variable called a parameter as follows:

x=f@®), y=g0)
Each value of t defines a point (x, y) = (f (v), g(t)).

EXAMPLES:
1. Sketch the curve for the following set of parametric equations.
1 o t?
1 YT et
ANSWER
¥
2t
y=1-x 1

Alternative,
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1
== -1
YT e t2+1 *
(2) A vector expression of the form (x, y) = (f (1), g(t)) is called a vector
function.

EXAMPLES:

1. Assuming ideal projectile motion g = 16/3, the height of the
object can be described by y = —x?/64 + 3x. Describe the
trajectory.

¥
150

100

x = 32t

50 + )
y = —166° + 96t

x
50 100 150 200

Parametric variable t

1
y=—§gt2=96:>t=6

x=vt=192=>v, =32
Thus, we obtain
x = 32t

(32t)? 5
y= ——6—4—+ 3(32t) = —16t° + 96t

The trajectory is 7 = (32t, —16t% + 96t).

(3) Calculus with vector functions

-

g -~

/ -~ r(tH At)
/'//-'/ri!‘}/-"
/ _./"/
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7' = lim —
At—0 At
7(t + At) — 7(t)

= 11mm

At—0 At

_ (f(t + At) —7(t) g(t+ At) — F(t))

= lim )

At—>0 At At
=(f'(©),g'®)

B. VECTOR FIELDS

(1) Each point (x, v, Z) in a space indicates a vector F (x, v, Z).

ﬁ'(x, v, Z) = P(x, v, Z))? + Q(x, v, 2)37 + R(x, v, Z)é
where P(x, v, Z), Q(x, v, Z) and R(x, v, Z) are called scalar functions.

EXAMPLES:
1. Sketch the following vector fields:

ﬁ'(x,y) = —yX +xy

T\

/

27 1 1 2
N
-1 /
"‘-_,_\_\_h“ '!-’FP-’
-k

S e?

F=—kr—27"
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(2) Gradient field
If f is a scalar function of x, y and z, then the gradient of f is
0f(x,y,2)£ N of(x,v,2) . N af(x,y,z)é
dx ady Y 0z

Vf(x, v, Z) =

where

28
k=20

The gradient vector field Vf (x, v, Z) is perpendicular to the level curves
(contour) f (x, v, Z) = ¢, i.e., Vf points to the maximum rate of change

fix,y)=20—7

at a point on a scalar function.
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EXAMPLES:
1. Sketch the level curve of f(x,y) = x? + y? = r and gradient

vector field.
ANSWER:

Vi(x,y) = 2x% + 2y9
(3x.3y)

2. Sketch the level curves of f (x, y) = x? — y? and gradient vector
fields.
ANSWER:

Vi(x,y) = 2x% — 2yy
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3. Sketch the level curves of f (x, y) = xy and gradient vector fields.
ANSWER:

Vﬁx, y) =yxX +xy
Lo b

(3) A vector field F(x,y,2z) = P(x,y,2)% + Q(x,,2)9 + R(x,y,2)Z is called
a conservative vector field if it is the gradient of some scalar function,
ie.,

ﬁ(x, y,z) =Vf(x,y,2)
Since Vf (x, v, Z) is perpendicular to the level curves (contour)
f (x, v, z) = ¢, thus, the conservative vector field Fis perpendicular to
the level sets of its scalar function f.

curve of
steepest
ascent 100
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1-2 Calculus With Vector Fields
A. LINE INTEGRAL

(1) The line integral of F along the path C

o

(2) Given a parameterization §$(t) of the path C

$(0) = x()X + y(©)y
The line integral becomes

b_) b_) .
f FED) - ds = J FEO)- ———d - f FEO) 3@ de

EXAMPLES:
1. Evaluate

fﬁ-d§
(4

where F (x, v, Z) = xzX — yzZ and C is the line segment from
(—1,2,0) to (3,0,1).
ANSWER:
The parameterization for the line:
si) =1 -1v(-1,2,0) +t(3,0,1)
= (4t — 1,2 — 2t,t) , 0<t<1
=M@lt-1Dx+Q2-20)y+tz
F(3() = (4t — Dtz — (2 - 20)tz
= (4> — )2 — (2t — 2¢?)2

0158 H



F(3(0)) - 5() = ((4t? - )2 — (2t — 2t2)2) - (4% — 29 + 2)
= 4(4t% —t) — (2t — 2¢?)
= 18t? — 6t

1
fﬁ-d§=f (18t% — 6t) dt = 3
c 0

() If F = Vf(x,y), then
b
fﬁ-d§=J FGO) - ds
(63 a

b
=f Vf(x,y) . §(t) dt

_ b ofdx 9fdy ofdz
‘f(ﬁ&*@&*&&ﬁf
— bd =4

_fa af(s(t))dt

= F3) - f(3(@)

The result only depends on the initial point and final point, and is
independent of path.

EXAMPLES:
1. Evaluate

fo-dsT
C

where f (x, v, z) = cos(mx) + sin(mx) — xyz and C is any path that

starts at (1,%,2) and ends at (2,1,—1).
ANSWER:

fc V- ds = F30) - F(3@)

= f(2,1,-1) —f<1,%,2>
=4

B. DIVERGENCE AND CURL

(1) A vector field visualized
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(2) Vector fields characterized
Divergence and curl are two measurements of vector fields.

‘ Divergence Curl

e :

| . o)

| = o &4 >
AN v R

Divergence measures the tendency of the fluid to collect or disperse at
a point, that is, divergence is a scalar or a single number.

Curl measures the tendency of the fluid to swirl around the point, that
is, curl is itself a vector. The magnitude of the curl measures how much
the fluid is swirling and the direction indicates the axis around which it
tends to swirl.

(3) The divergence of a vector field F= P(x, y)a? + Q(x, y)f/ + R(x, y)i is
oP 0dQ OR

V-F= aA+aﬂ+a“ PR+ Q9 +R:)=—+—+
B x Y z (x ey Z)_ax dy 0z

d0x dy 0z
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—r ¢ 4+— *— + —p .

/
$r / /
/‘ | \ l \ //' ,/‘
V-F>0 vV-F<o0 V-F=0

Source Sink

x y z
Ux = a a o0
dx dy 0z
P Q R
P NG
T R
l Y \\/’ P . -
-~ - .
~
VxF>0 V-F=0 V-F<0
EXAMPLES:
1. Sketch the vector field F = z2 and find its divergence
ANSWER:
ttttttt
vi=Loslor Lo
“ox oy ‘ez’ "

2. Sketch the vector fields F (x, v, z) = —yX + xy and find its curl

ANSWER:
-~
— ‘\
i A
7 / s RSP

x

01511 H



4
—_ a —_ faY
VXF = a—Zz
0

\<| S|Q)><>
k%|m‘<>

3. Sketch the vector fields F (x, v, Z) = xy and find its curl
ANSWER:

“
X vy z
dx dy 0z
0 x O

C. CAUSS'S DIVERGENCE THEOREM AND STOKES'
THEOREM

(1) Gauss's divergence theorem
The divergence in an infinitesimal volume

V-F>0 v-F<o0
Source Sink

The sum of the sources and sinks of vector fields within a volume is
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Define flux of a vector field passing through an infinitesimal area:

e F=F+F
F-di=(Fy+F.) di=F -di+F,-di=F dd
=0
The total flux of vector fields passing through the closed surface is

#ﬁ-d&
S

The sum of the sources and sinks of vector fields within a volume is the
same as the total flux of vector fields passing through the closed
surface.

7!,“ i :-‘ B 1 E dE~JV
g [ g B
Ik i . T_?,'\ E E,l - G B

(P LD ST L

=B o ,EVE B

Stokes' theorem
The curl in an infinitesimal area
(xF),

(7xF)
n’EL :, {‘"”-'}.

VXFE>0
The sum of the curls of vector fields within an area is
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jL(Vxﬁ)-da

Define circulation (or the amount of swirl) of a vector field along an
infinitesimal loop:
FowrE
ds

The dot-product of F along the path ds§

=0
the total circulation of vector fields of along the closed path spanning
the surface is

ffﬁ-ds?
c

The sum of the curls of vector fields within an area is the same as the
total circulation of vector fields of along the closed path spanning the
surface.

Qu

fL(Vxﬁ)d

= jﬂﬁ -ds
¢
EXAMPLES:
1. Evaluate the total flux of a vector field F = y2% + (2xy +2z2)9 +
2yzZ go through a unit cube at the origin.
ANSWER:
According to Gauss's divergence theorem,

#ﬁda = ﬂ V-Fdr

s v

Hence, we need to calculate

V-F= i—yz +£—(2xy+zz) +—a—2yz =2(x+y)
dy 0z

dx
Thus, we obtain
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'UJV FdT—ZJoljol 01(x+y)dxdydz
<] [ 1)

2. Evaluate the circulation of a vector field F = (sz + 3y2))7 +
4yz?2 for a unit square surface at x = 0.
Py )

1 =

| A

f
|

1y
X

ANSWER:
According to Stokes' theorem,

iﬁ-d§=ﬂ;(v><ﬁ)-d&

Hence, we need to calculate

X y Z
Vxﬁ—i- 3 i = (422 - 2x)% 5
= 5% 3y 5 |~ zZ“ — x)x+ZZZ
0 2xz+3y? 4yz?
dd = dydzx

Since x = 0 for this surface, we obtain

. 1 r1 4
'U(VXF)'d&=JJ4zzdydz=—
s 0 Jo 3

D. SECOND DERIVATIVES FOR A VECTOR FIELD

(1) The gradient of a scalar function f (x, v, Z) is a vector field

_of . of ~ Of,
Vf = x+a y+aZz

e Divergence of gradient:
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— a Eod a o a A af af,\ af,\
V'(Vf)—<a—x-x+a—y-y+—gz> <—;x+5;y+ Z-Z)

9] 9] 9]
L0 09,
S talt g
— VZf
e Curl of gradient:
x vy z
4] 6 9]
Vx (Vf)=|ox 6 0z =0
aof af of
dx ay 0z

(2) Second derivatives for a vector field

F(x,y,2) = P(x,y,2)% + Q(x,y,2)9 + R(x,y,2)2
e Divergence of curl:

e o 9 a a

Z —— — —

S 5 5| |x oy @z
v (VXF)=V~—- — Zl=la a4 a|=o0

ox dy 0z EP a} EP

P R Z

¢ P Q R

e Curl of curl:

Vx(Vxﬁ)=V(V‘F)—V2ﬁ
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1-3 Helmholtz Theorem
HELMHOLTZ THEOREM

Let F (7) be a vector field such that

V-F=D(@)

VxF=C(F)
If D(r) and ¢ (77) go to zero sufficiently rapidly at infinity, then, F (?)
has a unique decomposition:

F=-Vp+VxA4A

where
1 vﬁ D@
= — 3 - _d3 !
® 4m |T— |r—r
=L _Vzia,_i_ CE)
|T— | 4 |F—‘r

So if we have theory for, or measurements of, the divergence and curl

of our field of interest, V - Fand VX F respectively, we can calculate F.

EXAMPLES:
1. Suppose that
€o
VXxE=0

and E goes to zero at the infinity. Verify that E= Vo is
uniquely determined.

ANSWER:
According to Helmholtz theorem, if p(r) is given, the vector field
Eis
E=-Vo+Vx4
where
(p=—1— _V_E_ 34! 1 'D_(Q_d3 4

4 |r— | 47‘[60 |r— |

VxE
= ———-d3r’ =0
4n |r —
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Thus, E is uniquely determined by
E= )

2. Suppose that
V-B=0
VxB = Hoi
and B goes to zero at the infinity. Verify that B=Vx4is
uniquely determined.

ANSWER:
According to Helmholtz theorem, if i (77) is given, the vector field
B is
B=-Vo+Vx4
where
1( VB B0
= — —_— r =
YT o
fo L[ YXB 50 _Ho —]—(@—d%’
i |F—?’| i |?—F’|

Thus, B is uniquely determined by
B=Vx4

(2) Physical interpretation of ¢
Using Stokes' theorem, we obtain

fcﬁ-ds*:ﬂs(wﬁ)-da

For an irrotational field, i.e., V X F= 0, thus, we have

fﬁ d§=0
¢
Consider two paths A and B:

014 18 H



path A path B

Py Py
path A path B
Py Py
f Fods- f F.dg=0
Py Py
path A path B

Thus, the line integral is independent of path,

Pry
f Fdi=o(P,) - o(P))
P.
Since '

Py

| Vo ds = o(e) - o(r)

Py

we obtain F is conservative, i.e.,
F= Vo

(3) Physical interpretation of A
Using Gauss's divergence theorem, we obtain

ﬁgﬁ.da=ﬂfv(v-ﬁ)dr

For a solenoidal field, i.e., V - F= 0, the total flux through the closed
surface is zero. Thus, we have

ﬁﬁ-dd:O
S

Consider two surfaces §; and §,:
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Py

Path A

Path B
3P,

Thus, the surface integral is independent of the surface spanned by a
closed loop C,

- PZ-) PZ—)
ﬂpd&:f A-dg—f A ds

path A path B
Since
P Py
ng d§=f A d§—f A-d§’=ﬂ (vxA)-da
(64 Py Py )
path A path B

thus, we obtain
F=UxA4

POISSON'S EQUATION AND LAPLACE'S EQUATION

For an irrotational field, i.e., V X F= 0, we have
F= —Vo
Thus, we can obtain
V-F=V-(-Ve)=-V2@=D(r)
VZp =—D(r) - Poisson's equation
{Vch =0 o Laplace's equation
where V2 is called the Laplacian.

For a solenoidal field, i.e., V- F= 0, we have
F=VxA4

01520



Thus, we can obtain
VxF=VxVxAd=v(v-4)-v4

Since
- 1 1 =g
. — . 2! 3.7
VA= <Vr|F—F’|> (7)) d3r
1 1 R
—_ _ f—— . =1 3.7
= < V. |F—?"|> C(r)d T
1 [ C(#) 1 1 N
=——¢——2 . da+— | ——V..-C(7 d3 I}
Am Js |7 — 7] a+4nf|?—?'|r_=¥ ’
1 [ C(#
[ p— T(l%'da
41 s r—r’l

assume that the Gaussian surface is at infinity and ¢ (F') goes to zero
faster than 1/72 as r — . So the surface integral is zero. Thus, we
have

V-A=0
and obtain
{Wﬁ=—6
V2ZA=0
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1-4 Symmetry and Curvilinear Coordinates

A. SYMMETRY OF FUNCTIONS AND VECTOR FIELDS

(1) Cartesian coordinates
z

LY

23]

X
Scalar Function:

f(x,y.2)
Vector Field:

ﬁ'(x, v, Z) = P(x, v, Z)J? + Q(x, v, z)y + R(x, v, z)z“

(2) Spherical symmetry and coordinates
Z

x =rsinf cos¢

y =rsinfsin¢

zZ=rcosf
Scalar Function:
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f(r,0,¢)
Vector Field:

F(r,0,0) = P(r,0,¢)7 + Q(r,0,¢0)8 + R(1,6,¢)d

(3) Cylindrical symmetry and coordinates

Z

[H

h=3

X =71rcos¢

y=rsing

z=1z
Scalar Function:

f(r.¢,2)
Vector Field:

ﬁ'(r, o, z) = P(r, o, Z)f" + Q(r, o, Z)(ﬁ + R(r, o, Z)i
B. DIFFERENTIAL OPERATORS

(1) Cartesian coordinates

Gradient:
of . of  Of,
Vf(x,y,z)—a—- 8yy+5z
Divergence:
oP OQ OR
V. F(xy,z)— 8y+8z
Curl:
x y z
S d Ja d
VXF(x,y,Z): a— 5; a—Z
P Q@ R

Divergence of gradient = Laplacian:
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2 2 2
Vif(x,y,2) = f+£—f+—a—f
Y 2) = gt 922

Spherical coordinates

Gradient:
10f . 1 df .
Vf(T9¢) -— +;a_99+7'_s;56_¢;¢
Divergence:
V-F(r,6,0) = ————( 2P+ ——— (51nt9Q)+——1—-—a
s néd oo rsin @ 6(;[)
Curl:
1 1 . 1.
R rZsin®  rsind r(p
VXF(r,0,¢)=| 0 9 9
ar a6 do
P rQ rsin@ R

Divergence of gradient = Laplacian:

v 10(,0). 1 0 AP 0°
f_rzar rt ar f r2sin6 06 Sin 20 f rzsin296¢zf

Cylindrical coordinates
Gradient:
_ of ~ Oof ,
vf(r.¢.2) = +ra¢¢’+a z
Divergence:
10 0
V() = o PY 1350+ 3R
Curl:
1. . 1,
- r " ¢ r ’
VxF(rp,z)=|0 9 a
Jdr 0d¢ 0z
P rQ R

Divergence of gradient = Laplacian:
2 ( )_ 10 d 4 1 02 N 02
.2 ~ror\  or f rza¢2f azzf

EXAMPLES:
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1. Find the gradient of 1/#, where = |[# — 7.
ANSWER:

e Method I:
In Cartesian coordinates:

Let 7 = |F — 7| =\[(x—x’)2+(y—y’)2+(z—z’)2
Vl__Z(x—x))?_Z(y—y)A_Z(Z—Z)ZA:_z_:__/r;

243 243 243 73 72

-
e Method II:
In spherical coordinates:

C. INTEGRAL

(1) Cartesian coordinates

Z

volume elements: dt = dxdydz
fffV-ﬁde ﬂfv-ﬁdxdydz
v

(2) Spherical coordinates

01525 5
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X
area elements: da = (Rsin0 d6)(Rd¢) = R?sin0 d6d¢
R R 6=m ¢)=27t_)
ﬂF-d&:UF-fstinedem=R2J F -#sin@ dod¢
S 0=0 J¢p=0
Z
.
y
X

volume elements: dt = (rsin 0 dG)(rdqb)(dr) =r2sinf drdfd¢

R r r0=m ~Pp=2m R
fﬂder:f f V-Fr?sin6drdfd¢
v 0 J6=0 J¢=0

(3) Cylindrical coordinates
Z
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volume element: dt = (rdqb) (dz)(dr) = rdrd¢dz

R r =21 R
f,U-V.FdTZJ-f fV-Frdrd¢dz
% 0 Jp=0

EXAMPLES:

L.

Dirac delta function
A distribution which is well defined only when it appears under
an integral sign

é(x)

) R
0 b

b
f&(x)dle, a<x<b
a

where
o,  ifx#0
6(x)_{OO, lfx:()
Lo éa)
0 T

The properties of the delta function allow us to compute

f F()8(x) dx = £(0)
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Consider a vector field

5 1

E = T'_Zr

At every location, E is directed radially outward. Show that E
satisfies Gauss's divergence theorem.

ANSWER:
fffv-ﬁdr= #E-d&

v S
R.H.S.:
we integrate over a sphere of radius R, centered at the origin

. # T 2m
#E-d& = fR—Z--?stin9d9d¢ =f sianGf de = 4n

s 0 0

=2 =27
L.H.S.:
Vﬁ—la 21_1(’)1_0
“rzor\" ) Trzer T

The divergence is zero everywhere except at the origin because as
r -0, 1/r? - oo grows faster than r2 - 0.
We thus define

L . 1
v 2= 41683 (1) or equivalently V2 -= —4783(r)

and obtain

V-Edr= 4§53 (r)dt = 4n
7=,
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